1. 每个元素可用多次
Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is:
[7]
[2, 2, 3]
void cal(vector & candidates, int start, int target, vector & v, vector>& ans){ if(0 == target) { ans.push_back(v); return; } if(target < 0) return; int n = candidates.size(), i; for(i = start; i < n; i++) { if(i > start && candidates[i] == candidates[i-1]) continue; v.push_back(candidates[i]); cal(candidates, i, target-candidates[i], v, ans); v.pop_back(); }}vector > combinationSum(vector & candidates, int target) { vector > ans; vector v; sort(candidates.begin(), candidates.end()); cal(candidates, 0, target, v, ans); return ans;}
2. 每个元素只能用一次
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 10,1,2,7,6,1,5
and target 8
,
A solution set is: [1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]
void cal(vector & candidates, int start, int target, vector & v, vector>& ans){ if(0 == target) { ans.push_back(v); return; } if(target < 0) return; int n = candidates.size(), i; for(i = start; i < n; i++) { if(i > start && candidates[i] == candidates[i-1]) continue; v.push_back(candidates[i]); cal(candidates, i+1, target-candidates[i], v, ans); v.pop_back(); }}vector > combinationSum2(vector & candidates, int target) { vector > ans; vector v; sort(candidates.begin(), candidates.end()); cal(candidates, 0, target, v, ans); return ans;}
if(i > start && candidates[i] == candidates[i-1])continue;中的i > start可以保证没有重复结果。
3. 数字范围1-9,给定个数。
Find all possible combinations of k numbers that add up to a number n, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Ensure that numbers within the set are sorted in ascending order.
Input: k = 3, n = 7
Output:
[[1,2,4]]
Example 2:
Input: k = 3, n = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
void cal(vector & candidates, int start, int target, int k, vector & v, vector>& ans){ if(0 == target && 0 == k) { ans.push_back(v); return; } if(target < 0 || 0 == k) return; int n = candidates.size(), i; for(i = start; i < n; i++) { if(i > start && candidates[i] == candidates[i-1]) continue; v.push_back(candidates[i]); cal(candidates, i+1, target-candidates[i], k-1, v, ans); v.pop_back(); }}vector > combinationSum3(int k, int target) { vector > ans; vector candidates, v; for(int i = 1; i <= 9; i++) candidates.push_back(i); cal(candidates, 0, target, k, v, ans); return ans;}